

NASA SBIR/STTR Technologies

Radiation Resistant and Improved Emissivity Solar Cell System Using Modified PBO Film for Deep Space Application

PI: Dr. Nese Orbey, Foster-Miller, Inc., Waltham MA Proposal No.: 02-S4.07-8824

<u>Identification and Significance of Innovation</u>

The development of 20% AM0 thin-film solar cells exhibiting high power/weight ratios will be necessary for future space platforms to become a reality. In this proposed effort, Foster-Miller will focus on the task of developing a high-strength, high temperature resistant substrate, thus providing the means for achieving the desired power/weight ratio and AM0 efficiency.

Technical Objectives and Work Plan

Technical Objectives:

- Identify coating (s) that would render PBO resistant to atomic oxygen and UV irradiation
- •Identify coating(s) to increase surface emissivity
- •Produce PBO films of consistent gauge thickness
- •Demonstrate modified PBO fit for CIGS deposition to produce PV arrays with high power density

NASA and Non-NASA Applications

NASA - solar power satellites, microsats, nanosats

Non-NASA - Low power applications requiring cells significantly smaller than those currently available

Contacts

Principal Investigator:

Dr. Nese Orbey (781) 684-4170, norbey@foster-miller.com

Authorized Contract Negotiator:

Susan Dorsey (781) 684-4242, sdorsey@foster-miller.com